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THE DIFFRACTION OF PLANE ELASTIC WAVES
BY A DELAMINATED RIGID INCLUSION
WHEN THERE IS SMOOTH CONTACT
IN THE DELAMINATION REGIONfY
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A solution of the problem of the diffraction of harmonic elastic waves by a thin rigid strip-like delaminated inclusion in an
unbounded elastic medium, in which the conditions for plane deformation are satisfied, is proposed. We mean by a delaminated
inclusion an inclusion, one side of which is completely bonded to the elastic medium, while the second does not interact in any
way with it, or this interaction is partial. It is assumed that the conditions for smooth contact are satisfied in the delamination
region. The method of solution is based on the use of previously constructed discontinuous solutions of the equations describing
the vibrations of an elastic medium under plane deformation conditions. The problem therefore reduces to solving a system of
three singular integral equations in the unknown stress and strain jumps at the inclusion. An approximate solution of the latter
enabled formulae to be obtained that are convenient for numerical realization when investigating the stressed state in the region
of the inclusion and its displacements when acted upon by incident waves. © 1998 Elsevier Science Ltd. All rights reserved.

1. Suppose an elastic medium, which is in a state of plane deformation, contains a thin rigid inclusion,
situated in the xy plane in the sectiony = 0, | x | < 4. Aty = —0 it is completely bonded to the elastic
medium, and at y = +0 it is peeled off, and at this boundary the conditions for smooth contact are
satisfied. This means that the following boundary conditions are satisfied on the inclusion

Ty (%,40) =0, v (x,20) = +Wx, u(x,-0)=8,|xl<a 1.1

Moreover, the stresses and strains undergo discontinuities along the line on which the inclusion is
situated. We will denote the jumps at the discontinuities as follows:

(0,) =61 (x) (Ty) =%2(x), @) =0, W=y x)ixI<a (1.2)

The angular brackets in (1.2) mean the same as in [1]. Plane longitudinal or transverse waves interact

with the inclusion. The waves are specified by the following potentials

A B

Po(x,y)= P (%, 7), Wo(x,y)= x—ez(x,y) (1.3)
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e, (x,y) = explin,(xcos8, + ysin8,), xf =

where 6, is the angle between the direction of the wave propagation and the x axis, and  is the oscillation
frequency. The factor e™® is omitted everywhere.

The constants J;, 3,, y describe the translational and rotational motions of the inclusion and remain
to be determined. To do this the following equalities are obtained from the equations of motion of the
inclusion as a rigid body

md ;0% =—[x;(x)dx, j=12; %mazo)zy= [ Xy (x)dx (1.4)

where m is the mass per unit length of the inclusion, and integration over x (and below over 1 also) is
carried out in the section [-a, a].
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In addition we have the equality
Jx4(x)dx=0 (1.5)

To solve the problem we will represent the resultant displacement and stress field in the following
form

T(x,y) = Ty(x, y) + Tylx, ) (1.6)

L) =l =[o}, Th0 5 u'], k=01
The vector T(x, y) is defined by the discontinuous solution (1.2) from [1] with jumps (1.2), while the
components of the vector Tg(x, y) are the stresses and displacements due to the longitudinal or transverse
wave (1.3) propagating in the medium and are given by (2.11) and (2.12) from [1].
The displacement and stress field in the medium is obviously uniquely defined by (1.6), after the
unknown jumps (1.2) have been determined. To do this, as in [1], we replace conditions (1.1) by
equivalent conditions, which, after substituting (1.6) into them, take the form

5(x,40) =13 (x,40), 4 (x,20)=y -1 (x,20)

1y (x,-0)=—13 (x,-0), IxI<a 1.7)
13(-a,20) = §, ~ya— 1Y (-a,0), ti(-a,~0) =38, — 2 (-a,~0)

We substitute the values of the components of the vector T, defined in (1.2) [1] into the first three
equations of (1.7). Here we must take into account the following formulae for the limiting values, which
arise from the properties of discontinuous solutions

1 AZ(m)

. - L L rwm-
R (30 =t-Zm+-—] —, dn+——[Wn-xZmdn (1.8)

where, in the case considered, Z(n) = [xi(n), x2(n), 0, x’4(n)]T and A is a numerical matrix, the
elements of which are expressed in terms of the elasticity constants of the medium, containing the
inclusion, while the elements of the functional matrix W(z) = {Wy} (j, k = 1, 2, 3, 4) are found from
the formulae

Wiz) = Wis_(z) =0 (1.9)

z 2m-1 z 2m-1
W, x)=% ,'Z(—-) +Inizl Y 1’2(——) , Jok=12,3,4
m 2 m 2
Here and below the summation over m is carried out from 1 to co. When obtaining (1.9) we used formulae
(1.3)~(1.5) from [1], and also the well-known representations for Hankel functions in the form of power
series [2].
As a result of the relatively unknown jumps, a system of three singular integral equations is obtained,
the matrix form of which is (integration over t is carried out in the interval [-1, 1])

BO+QId +RP=F (1.10)
- ._1_ 2(_1). = _l_. - 1)YD
I'd = 2nj — dt, R® 2n]R(r Hd(t)dt
D(1) =19,(1), 92 (1), 93D, F@&) =L£(8), £, fN
01T =170 (a), 9x(1)=1Yp(at), 95(T)=1x4(at)
i =-p""1%at,+0), HO=7-v] (a,0), f(1)=-u; (a1.0)

The non-zero elements of the third-order matrices B, Q and R are
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by =Y%. by=-Y%, qu=an=-E" q3=20-8%
gn=qu=-1+EY2,&=cic;

Ry (1 - 1) = aWyla(t - 0], Ri3(T ~ 1) = auWp4la(t - )]
Ry (- 1) = aWsla(t - 1)), Ria(t~ ) = aWyyla(t - 1)]
Ryt —1) = aWyla(t - 1]

We similarly obtain from the remaining equalities (1.7)

_i!ff [ 0,(0)[~g3; In(T+ 1) + T (T+ DidT+
+§17:-I(p2(‘t)[—q23 n(t+ 1)+ T (T + Dt = 8gy =Y + foy (111)

% f Q2(T)—qy3 T+ D+ Tt +Didt=8p + fin

2m 2m
+1 +
ij(t+1)=2p;?i(r—tl) +nly 7,:(1_1)
m 2 2 'm 2

2. To solve system (1.10) simultaneously with (1.11) we multiply both sides of (1.10) by the matrix
Q7! (the latter exists since det Q = 0). We obtain

C® + ET® + QR = Q-'F (2.1)

where C + Q7'B and E is the third-order identity matrix. After this, as was done in {3] when solving a
similar problem in a static formulation, we introduce the unknown functions y;(t) (j = 1, 2, 3), defined
by the equalities

¥(1) = P'®(1), D(1)=P¥(T) (2.2)
W(1) = (W, (0), W, (), W5 (0"

The matrix P is constructed in such a way that P"'CP = D, while D is a third-order diagonal matrix.
Since the eigenvalues of the matrix C are different, this matrix exists and can easily be constructed [4].
Here the diagonal elements of the matrix D are

dy=h=0, dp=ky=-}, dy=k3=}}

Substituting (2.2) into (2.1) and multiplying the equation obtained by P!, we arrive at the following
system of singular integral equations (summation over i is carried out from 1 to 3)

1 vy, (7) 1
kak(t)+51;[-;'£_—t—dt+E?ILH('c—t)w,-(‘t)d‘:=c,,y+gk(t),te[~—l,l],k=1,2,3 (2.3)
L={L;}=P"'Q7'RP, G=1{g,}=PQ"'F

a= ‘44511\- c; =2¢q, 1‘1511a c3 =—2q),

It is necessary to consider system (2.3) simultaneously with Eqs'(l.ll), (1.4) and (1.5), which, after
introducing the new unknowns (2.2), contain integrals with a logarithmic singularity

L =[y(®In(t+1)dr, k=1,2,3 (2.4)

The solution of system (2.3) in the class of functions having integrable singularities [5, 6], can be
expanded in the form

V(D) =0, (Dw(7), 0, () =(1-1* A+ k=123 (25)
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where a, is the root of the equation
Ay totga, /2=0, -1<a, <0, o +8, =1
In the case of system (2.3) we obtain
=P ==, ay=By=-Y, a;=B,=-%
We approximate the functions w(¢) by polynomials of the best approximation

Pak B ®
(¢ =T MBS P (p, )

w, () =Gu()= Zw,m, =123 (2.6)

Wim = Wi(Tiom)» P2 P¥ (£) are Jacobi polynomials of the nth degree, orthogonal with weight () and
T are the roots of these polynomials.

If e (¢) are represented by formulae (2.5) and (2.6), we have the following quadrature formulae for
the singular integral operators [7]

R de= b, —in_ @7)
Ly “‘lq

np; % Be (g im)

bym =— .
" 2sinmoy [BPE (1Y

k=123
Approximate values can be obtained for integrals (2.4) if we replace w(¢) using formulae (2.5) and

(2.6). As a result we obtain

In(t+ )PP (D), (1)
(T~ T LB P (10, )Y

I = X ChaWim» Ot = dt, k=1,2,3 (2.8)
m

The integrals o}, can be evaluated by a method specially developed for singular integrals, which
contain orthogonal polynomials, described in [3].

If we now use relations (2.7) and (2.8) and the regular integrals are replaced by sums using the
Gauss—Jacobi quadrature formulae with appropriate weight [8] w.(7) (k = 1, 2, 3), we obtain the following
system of linear algebraic equations

w
Zbkm T ):r_nt +'2—22bm.W,mLk. (tm tlcj) =
m km b

=Y +&(ty) j=12,...,n-1 k=123

G 1
o Xo 5‘1;2;Zl’imwimcu(1+ Tim) =801 =¥+ for ~

8n
[+
-“8""'20'2'.»“’2»; ZOBmWElm
+""‘ZZ imWimCai(L+ Tim) =8¢z + fip (2.9

‘Z binWim + B2 2b2mw2m - %3'—2 bypWiy, = 4501'"0"3

‘Z TimbPimWim + B2y Z“zmbzmwzm "EZ'LE TimD3mWim = o 'Y'"o"o

Sit m

3 by Wom + 071 3 b3 Wam = 48amon ~ G35 3 by Wap +3 baWa =0
m m m m
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Solving system (2.9) we obtain i, (k = 1,2,3;m = 1,2,...,n) and 8y, 8py, y, which epables us to
investigate the displacements and stresses in the medium containing the inclusion numerically.

We will take as the quantity characterizing the stress concentration in the region of the ends of the
inclusion, as in [9, 10], the coefficients of the singularities of the stress jumps at the inclusion, which
can be calculated from the formulae

= lim 1+ 149, (t); j=12
1%l

(at
K% = lim (12 0% %@
Tl H

After substituting (2.5) and (2.6) into this equation and taking the limit we obtain

Ki =27p,S%, K =32748% §* =Gy(1), §” =Gy(-D (2.10)

It can be seen that the stressed state in the elastic medium near the ends of the inclusion is determined
by S*.

The results of a numerical analysis of the displacements of the inclusion are shown in Figs 1 and 2.
In Fig. 1 we show the absolute values of the dimensionless amplitudes of the vibrations of the inclusions
| 801> | 8021, | v | as a function of the dimensionless frequency »y = x,a. Curve 1 shows the change in
| o1 | when a longitudinal wave interacts with the inclusion. It is assumed that the wave propagates at
an angle 6, = n/2 (the wave is incident on the bonded side of the inclusion) and at an angle 6, = 3n/2
(the wave is incident on the peeling side of the inclusion). In both cases the values of | 8y, | are the
same, while | 8g;| = |y | = 0. Curves 2 show the change in | 8, | when 6, = /2 (the continuous curve)
and 6, = 3n/2 (the dashed curve). The change in | y | when a transverse wave is incident on the inclusion
at an angle 0y = n/2 and 6y = 3n/2 is represented by curves 3, where | 8p; | = 0.

The results of an investigation of the amplitude of the vibrations of the inclusion as a function of the
angle of incidence of the wave for a fixed frequency % = 2 are shown in Fig. 2, where the continuous
curves correspond to a longitudinal wave incident on the inclusion while the dashed curves correspond
to the incidence of a transverse wave., Curves 1-3 show the change in| 8y, |, | 8y |, | v |- Where longitudinal
waves propagate | 8y; has its maximum values when | 8y, |, while 8, = + n/4 and |y| have their maximum
values when 8y = x n/4. If transverse waves propagate, | 8y, | reaches a maximum when 8, = * n/4,
| 89, | reaches a maximum 6y = * n/2 and | y | reaches a maximum when 6y = 0.

Figure 3 shows the absolute values of the coefficients of the stress singularities | $* | as a function of
frequency. Curves 1 and 2 represent this relationship when a transverse wave, propagating at angles of
8y = /2 and 6, = 3n/2, respectively, is diffracted by the inclusion. In this case S* = §. The presence
of a maximum when %y > 2 is of interest. When longitudinal waves, incident at the same angles, are
diffracted, the values of S* and S~ are close to zero. Curves 3 illustrate the change in | S* | as the frequency
increases for transverse waves, while curves 4 illustrate the change for longitudinal waves incident at
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an angle 6, = 0. The continuous curves show the change in | $”| and the dashed curves represent the
change in | S*|.

In Fig. 4 we show graphs of | S”| (the continuous curves) and | S* | (the dashed curves) against the

angle of incidence 6, for longltudmal waves (curves 1) and transverse waves (curves 2) for a fixed
frequency %o = 2. When longitudinal waves are diffracted the maximum values of | $¥ | occur at
0y = * 3n/20, while the minimum values occur at 8y = * n/2. If a transverse wave interacts with the
inclusion, the greatest values of | $* | are observed when 6y = % 2n/5, and the least values are observed

when 6y = * 3r/20.
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